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Introduction
This work focuses on balancing applied and dissipated en-

ergy to estimate parameters [1,2], in this case for multi-degree-
of-freedom (MDOF) and large-order systems.

Energy Balancing for MDOF Systems: An Example
The equaion of motion of a chain of four unit masses con-

nected by unit linear springs, with linear and nonlinear damp-
ing, is M̂ẍ + Ĉẋ + K̂x + f̂(ẋ,x) = r̂(t), where x is the displace-
ment vector and r̂(t) is the input vector, with proportional lin-
ear damping, such that Ĉ = cK̂, c unknown, and the uniform
quadratic damping dẋi|ẋi| with unknown constant d is applied to
each mass. The excitation acosωt is applied to the fourth mass.
We simulated responses with the values c = 0.15 and d = 0.10,
at a step size of h = 0.1 for 1000 steps to remove the transients,
and then 200 more steps to record steady state responses. We
resonated the first mode (ω = 0.618) with input amplitudes a =
0.25, a = 0.5, a = 0.75, and a = 1. Figure 1 shows the animated
response through a cycle of vibration for a = 1.0.

The positions are measured during a periodic response. The
identification equations are formed by the inner product of the
velocity vector with the equation of motion. Integrating over a
period of oscillation, the conservative terms drop out, and the
nonconservative work terms balance as

Wd =
I

ẋT Ĉẋdt +
I

ẋT f̂(ẋ)dt =
I

ẋT r̂(t)dt = Wa. (1)

Equation (1) has embedded unknowns c and d, and has the
form cα + dβ = γ, where α =

H
(ẋ2

1 + ẋ2
2 + ẋ2

3 + ẋ2
4 − ẋ1ẋ2 −

ẋ2ẋ3 − ẋ3ẋ4)dt, β =
H
(|ẋ1|3 + |ẋ2|3 + |ẋ3|3 + |ẋ4|3)dt, and γ =H

ȧx4 cos(ωt)dt. These integrals were performed using the rect-
angular integration rule. For each excitation amplitude, we com-
pleted this equation, and the least squares solution led to esti-
mates cI = 0.1499 and dI = 0.1003.

If there are more degrees of freedom than sensors, we use
proper orthogonal decomposition (POD) for reduced-order mod-
eling. Suppose the “dominant” proper orthogonal modes (POMs)
are determined (from the eigenvectors of R = XT X/N, where the
rows of X are the N time samples of elements of x). We write
x ≈ Uy , where columns of U are the dominant POMs, and y
are the proper orthogonal modal coordinates. If retained modes
represent a large percentage of the signal power (for example
99.9%), the approximate equality is rather good. Substituting
into the equation of motion and premultiplying by UT yields

UT M̂Uÿ+UT ĈUẏ+UT ˆKUy+UT f̂(Uy,Uẏ)≈ UT r̂(t), (2)

or Mÿ + Cẏ + Ky + f(y, ẏ) ≈ r(t). Thus, for the energy balance
step,

H
ẏT (Cẏ + f(y, ẏ))dt ≈ H ẏT r(t)dt, which is the identifica-

tion equation of the form cα+dβ = γ.
Using the same data, the dominant POM of each response

contained 96.9%, 97.5%, 98.1%, and 98.8%, respectively, of the
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Figure 1. Axial steady-state displacement plotted transversally (a = 1).
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total signal energy. The identification results were cI = 0.1404
and dI = 0.1138, the error induced by reduced order modeling.

We applied this to a string, robustly to added sensor noise.
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