ENERGY-BASED ESTIMATION OF DAMPING PARAMETERS IN MULTI-DEGREE-OF-FREEDOM VIBRATION SYSTEMS

B. F. Feeny
Department of Mechanical Engineering, Michigan State University, East Lansing, Michigan, USA
Email: feeny@egr.msu.edu

Introduction

This work focuses on balancing applied and dissipated energy to estimate parameters [1,2], in this case for multi-degree-of-freedom (MDOF) and large-order systems.

Energy Balancing for MDOF Systems: An Example

The equaion of motion of a chain of four unit masses connected by unit linear springs, with linear and nonlinear damping, is $\hat{\mathbf{M}} \ddot{\mathbf{x}}+\hat{\mathbf{C}} \dot{\mathbf{x}}+\hat{\mathbf{K}} \mathbf{x}+\hat{\mathbf{f}}(\dot{\mathbf{x}}, \mathbf{x})=\hat{\mathbf{r}}(t)$, where x is the displacement vector and $\hat{\mathbf{r}}(t)$ is the input vector, with proportional linear damping, such that $\hat{\mathbf{C}}=c \hat{\mathbf{K}}, c$ unknown, and the uniform quadratic damping $d \dot{\mathbf{x}}_{i}\left|\dot{\mathbf{x}}_{i}\right|$ with unknown constant d is applied to each mass. The excitation $a \cos \omega t$ is applied to the fourth mass. We simulated responses with the values $c=0.15$ and $d=0.10$, at a step size of $h=0.1$ for 1000 steps to remove the transients, and then 200 more steps to record steady state responses. We resonated the first mode ($\omega=0.618$) with input amplitudes $a=$ $0.25, a=0.5, a=0.75$, and $a=1$. Figure 1 shows the animated response through a cycle of vibration for $a=1.0$.

The positions are measured during a periodic response. The identification equations are formed by the inner product of the velocity vector with the equation of motion. Integrating over a period of oscillation, the conservative terms drop out, and the nonconservative work terms balance as

$$
\begin{equation*}
W_{d}=\oint \dot{\mathbf{x}}^{T} \hat{\mathbf{C}} \dot{\mathbf{x}} d t+\oint \dot{\mathbf{x}}^{T} \hat{\mathbf{f}}(\dot{\mathbf{x}}) d t=\oint \dot{\mathbf{x}}^{T} \hat{\mathbf{r}}(t) d t=W_{a} \tag{1}
\end{equation*}
$$

Equation (1) has embedded unknowns c and d, and has the form $c \alpha+d \beta=\gamma$, where $\alpha=\oint\left(\dot{x}_{1}^{2}+\dot{x}_{2}^{2}+\dot{x}_{3}^{2}+\dot{x}_{4}^{2}-\dot{x}_{1} \dot{x}_{2}-\right.$ $\left.\dot{x}_{2} \dot{x}_{3}-\dot{x}_{3} \dot{x}_{4}\right) d t, \beta=\oint\left(\left|\dot{x}_{1}\right|^{3}+\left|\dot{x}_{2}\right|^{3}+\left|\dot{x}_{3}\right|^{2}+\left|\dot{x}_{4}\right|^{3}\right) d t$, and $\gamma=$ $\oint \dot{a} x_{4} \cos (\omega t) d t$. These integrals were performed using the rectangular integration rule. For each excitation amplitude, we completed this equation, and the least squares solution led to estimates $c_{I}=0.1499$ and $d_{I}=0.1003$.

If there are more degrees of freedom than sensors, we use proper orthogonal decomposition (POD) for reduced-order modeling. Suppose the "dominant" proper orthogonal modes (POMs) are determined (from the eigenvectors of $\mathbf{R}=\mathbf{X}^{T} \mathbf{X} / N$, where the rows of \mathbf{X} are the N time samples of elements of \mathbf{x}). We write $\mathbf{x} \approx \mathbf{U y}$, where columns of \mathbf{U} are the dominant POMs, and \mathbf{y} are the proper orthogonal modal coordinates. If retained modes represent a large percentage of the signal power (for example 99.9%), the approximate equality is rather good. Substituting into the equation of motion and premultiplying by \mathbf{U}^{T} yields

$$
\begin{equation*}
\mathbf{U}^{T} \hat{\mathbf{M}} \mathbf{U} \ddot{\mathbf{y}}+\mathbf{U}^{T} \hat{\mathbf{C}} \mathbf{U} \dot{\mathbf{y}}+\mathbf{U}^{T} \mathbf{K} \hat{\mathbf{U}} \mathbf{y}+\mathbf{U}^{T} \hat{\mathbf{f}}(\mathbf{U} \mathbf{y}, \mathbf{U} \dot{\mathbf{y}}) \approx \mathbf{U}^{T} \hat{\mathbf{r}}(t), \tag{2}
\end{equation*}
$$

or $\mathbf{M} \ddot{\mathbf{y}}+\mathbf{C} \dot{\mathbf{y}}+\mathbf{K y}+\mathbf{f}(\mathbf{y}, \dot{\mathbf{y}}) \approx \mathbf{r}(t)$. Thus, for the energy balance step, $\oint \dot{\mathbf{y}}^{T}(\mathbf{C} \dot{\mathbf{y}}+\mathbf{f}(\mathbf{y}, \dot{\mathbf{y}})) d t \approx \oint \dot{\mathbf{y}}^{T} \mathbf{r}(t) d t$, which is the identification equation of the form $c \alpha+d \beta=\gamma$.

Using the same data, the dominant POM of each response contained $96.9 \%, 97.5 \%, 98.1 \%$, and 98.8%, respectively, of the

Figure 1. Axial steady-state displacement plotted transversally $(a=1)$.
total signal energy. The identification results were $c_{I}=0.1404$ and $d_{I}=0.1138$, the error induced by reduced order modeling.

We applied this to a string, robustly to added sensor noise.
Acknowledgements: This work is related to projects with NASA (NAG-1-01048) and NSF (CMS-0099603).

References

[1] G. R. Tomlinson and J. H. Hibbert, 1979, Journal of Sound and Vibration 64 233-242.
[2] J.-W. Liang and B. F. Feeny, 2006, Journal of Sound and Vibration 295 988-998.

